
CDF
Internal Format

Description

Version 2.6, December 18, 1997

National Space Science Data Center

Copyright c
 1990 | 1998 NASA/GSFC/NSSDC

National Space Science Data Center

NASA/Goddard Space Flight Center

Greenbelt, Maryland 20771 (U.S.A.)

DECnet | NSSDCA::CDFSUPPORT

Internet | cdfsupport@nssdca.gsfc.nasa.gov

Permission is granted to make and distribute verbatim copies of this document provided this copyright and

permission notice are preserved on all copies.

Contents

Preface ix

1 Introduction 1

2 dotCDF File 3

2.1 Magic Numbers . 4

2.2 CDF Descriptor Record . 6

2.3 Global Descriptor Record . 9

2.4 Attribute Descriptor Record . 10

2.5 Attribute Entry Descriptor Record . 12

2.6 Variable Descriptor Record . 15

2.7 Variable Index Record . 17

2.8 Variable Values Record . 19

2.9 Compressed CDF Record . 20

2.10 Compressed Parameters Record . 21

2.11 Sparseness Paramters Record . 22

2.12 Compressed Variable Values Record . 23

2.13 Unused Internal Record . 23

3 Variable Files 27

4 Variable Records 29

iii

iv CONTENTS

5 Encodings 33

5.1 Data Representations . 33

5.1.1 Bits . 33

5.1.2 Bytes . 33

5.1.3 Integers . 33

5.1.4 Floating-Point . 34

5.2 Control Information . 37

5.2.1 Integer Values . 37

5.2.2 Character Strings . 37

5.3 Application Data . 37

A Single-Precision Floating-Point 41

B Double-Precision Floating-Point 45

List of Figures

2.1 Example of an Uncompressed dotCDF File Arrangement . 5

2.2 Example of a File Arrangement of a dotCDF File with a Compressed Variable 6

2.3 Example of a File Arrangement of a Fully Compressed dotCDF File 7

2.4 CDF Descriptor Record (CDR) . 8

2.5 Global Descriptor Record (CDR) . 11

2.6 Attribute Descriptor Record (ADR) . 13

2.7 Attribute Entry Descriptor Record (AEDR) . 14

2.8 Variable Descriptor Record (VDR) . 18

2.9 Variable Index Record (VXR) . 19

2.10 Variable Values Record (VVR) . 20

2.11 Compressed CDF Record (CCR) . 21

2.12 Compressed Paramters Record (CPR) . 22

2.13 Sparseness Parameters Record (SPR) . 22

2.14 Compressed Variable Values Record (CVVR) . 23

2.15 Unused Internal Record (UIR) . 24

2.16 Unsociable Unused Internal Record (UUIR) . 25

v

vi LIST OF FIGURES

List of Tables

2.1 Internal Records . 4

5.1 Little-Endian vs. Big-Endian . 34

5.2 IEEE 754, Single-Precision Floating-Point, Little-Endian . 34

5.3 IEEE 754, Single-Precision Floating-Point, Big-Endian . 35

5.4 Digital's F FLOAT, Single-Precision Floating-Point . 35

5.5 IEEE 754, Double-Precision Floating-Point, Little-Endian . 35

5.6 IEEE 754, Double-Precision Floating-Point, Big-Endian . 36

5.7 Digital's D FLOAT, Double-Precision Floating-Point . 36

5.8 Digital's G FLOAT, Double-Precision Floating-Point . 36

5.9 Supported Data Types . 38

5.10 Supported Data Encodings . 38

5.11 Data Encodings vs. Data Types . 39

vii

viii LIST OF TABLES

Preface

This document will present the physical �le layout used by the Common Data Format (CDF) for CDF

Version 2.6. No attempt will be made to teach the concepts of CDF. For that please refer to the CDF User's

Guide, CDF C Reference Manual, and CDF Fortran Reference Manual. This document will assume that you

are familiar with rVariables, zVariables, attributes, gEntries, rEntries, zEntries, and all of the other CDF

concepts. Using the contents of this document you should be able to rewrite the CDF library in your spare

time.

ix

x

Chapter 1

Introduction

A CDF may have one of two formats: single-�le or multi-�le. A single-�le CDF contains everything in one

�le having an extension of .cdf. A multi-�le CDF stores everything except variable values in one �le (with

an extension of .cdf). The variable values are stored in separate �les | one per variable. Variable �les

are described in Chapter 3. The .cdf �le of a CDF will be referred to as the dotCDF �le throughout this

document.

The dotCDF �le of a CDF contains magic numbers and numerous internal records used to organize informa-

tion about the contents of the CDF (for both single-�le and multi-�le CDFs). Chapter 2 describes the magic

numbers and the various internal records. The data encodings used by CDF are described in Chapter 5.

The �le attributes of a dotCDF or variable �le are not an issue on UNIX-based systems, the PC, or the

Macintosh1 because all �les on those platforms are simply treated as a sequence of bytes. On OpenVMS-

based systems, however, �le attributes are very much an issue. The �le attributes of a dotCDF or variable

�le created by the CDF library on an OpenVMS-based system are as follows:

File organization: Sequential

Record format: Fixed length 512 byte records

Record attributes: None

RMS attributes: None

These are also the �le attributes for a �le which has been FTPed to an OpenVMS-based system in binary

mode. With these �le attributes the CDF library is able to read the �le as if it simply consisted of a sequence

of bytes. Transferring a CDF �le to an OpenVMS-based systems as a text �le will result in a di�erent set of

�le attributes as well as the insertion of additional bytes into the �le (because the �le system thinks there

are suppose to be lines of text). CDF �les transferred in this way will not be readable by the CDF library.

CDFs created while running the POSIX Shell on a DEC Alpha (running OpenVMS), however, will have a

di�erent set of �le attributes when the POSIX Shell is not being used. These �le attributes are:

File organization: Sequential

Record format: Stream LF, maximum 32767 bytes

Record attributes: Carriage return carriage control

RMS attributes: None

1On a Macintosh only the data fork of a �le is used in a dotCDF or variable �le.

1

2 CHAPTER 1. INTRODUCTION

A CDF �le with these attributes appears to be readable by the CDF library on current versions of OpenVMS

for a DEC Alpha. Some older version of OpenVMS apparently treat these �le attributes di�erently and may

cause a problem for the CDF library.

Chapter 2

dotCDF File

This chapter will describe the contents of the dotCDF �le. The dotCDF �le contains a magic number and

two or more internal records (IRs) that are used to organize the contents of a CDF. Di�erent types of internal

records are used to store information about various aspects and/or objects in the CDF. Each internal record

contains two or more �elds. The �rst �eld (at internal record o�set1 0x0), referred to as the RecordSize

�eld, is a 4-byte unsigned integer containing the size of the internal record in bytes. The second �eld (at

internal record o�set 0x4), referred to as the RecordType �eld, is a 4-byte signed integer containing the type

of internal record. Fields from the third through the last depend on the type of internal record. Each �eld

is stored contiguously, however, and some �elds may not be present in a particular instance of a type of

internal record. Note that internal record �elds are also referred to as \internal values."

Table 2.1 lists the types of internal records, the associated RecordType values, and brief descriptions. Detailed

descriptions are found in the corresponding sections.

All dotCDF �les contain a CDF Descriptor Record (CDR) and a Global Descriptor Record (GDR). Other

internal records will be present depending on the contents of the CDF. The CDR is always at �le o�set2

0x00000008 which immediately follows the magic number(s) described in Section 2.1. The �le o�set of the

GDR is stored in the CDR.

The only internal record at a �xed location in the dotCDF �le is the CDR. All other internal records

(including the GDR) may be present in any order (which generally depends on the order in which the

contents of the CDF were created by an application). File o�sets are used to \point" to other internal

records. Linked lists of internal records are implemented by storing the �le o�set of the �rst internal record

on the linked list, having that internal record store the �le o�set of the next internal record on the linked

list, and so on. Figure 2.1 shows a possible arrangement of internal records in a "uncompressed" dotCDF

�le. Note that the GDR \points" to the �rst zVDR that in turn \points" to the next zVDR. File o�sets as

described in the sections to follow are used to implement this linked list. Keep in mind that this is only an

example of how a dotCDF �le might be arranged. The internal records shown could be ordered in a number

of di�erent ways depending on how the CDF was written by the application. Figure 2.2 shows a possible

arrangement of internal records in a dotCDF �le which has a variable compressed. Figure 2.3 shows the �le

arrangement of internal records in a fully compressed dotCDF �le.

1The o�set in (hexadecimal) bytes from the beginning of the internal record.
2The o�set in (hexadecimal) bytes from the beginning of the �le.

3

4 CHAPTER 2. DOTCDF FILE

Type of RecordType Field

Internal Record Internal Value Purpose/Contents

CDR 1 CDF Descriptor Record.

General information about the CDF.

See Section 2.2.

GDR 2 Global Descriptor Record.

Additional general information about the CDF.

See Section 2.3.

rVDR 3 rVariable Descriptor Record.

Information about an rVariable.

See Section 2.6.

ADR 4 Attribute Descriptor Record.

Information about an attribute.

See Section 2.4.

AgrEDR 5 Attribute g/rEntry Descriptor Record.

Information about a gEntry or rEntry of an attribute.

See Section 2.5.

VXR 6 Variable Index Record.

Indexing information for a variable.

See Section 2.7.

VVR 7 Variable Values Record.

One or more variable records.

See Section 2.8.

zVDR 8 zVariable Descriptor Record.

Information about a zVariable.

See Section 2.6.

AzEDR 9 Attribute zEntry Descriptor Record.

Information about a zEntry of an attribute.

See Section 2.5.

CCR 10 Compressed CDF Record.

Information about a compressed CDF/variable.

See Section 2.9.

CPR 11 Compression Parameters Record.

Information about the compression used for a CDF/variable.

See Section 2.10.

SPR 12 Sparseness Parameters Record.

Information about the speci�ed sparseness array.

See Section 2.11.

CVVR 13 Compressed Variable Values Record.

Information for the compressed CDF/variable.

See Section 2.12.

UIR -1 Unused Internal Record.

An internal record not currently being used.

See Section 2.13.

Table 2.1: Internal Records

2.1 Magic Numbers

CDF Version 2.6 uses two magic numbers.3 The �rst one is 0xCDF260024 at �le o�set 0x00000000 stored as

a 4-byte, unsigned integer with big-endian byte ordering. It is followed by the second one, another 4-byte

3They don't seem like magic to me but looking at these values is how you would determine the identity of a �le.

2.1. MAGIC NUMBERS 5

Magic number 1

Magic number 2

CDR

GDR

zVDR

ADR

VXR

VVR

AzEDR

VVR

AzEDR

zVDR

r

-

r

-

r

-

r

-

r

-

r

-

r

�

r

�

r

�

r

r

r

r

Figure 2.1: Example of an Uncompressed dotCDF File Arrangement

unsigned integer of 0x0000FFFF for a regular CDF �le5 or 0xCCCC0001 for a compressed CDF �le6 at �le

o�set 0x00000004. The �rst internal record is stored at �le o�set 0x00000008.

4Pre-V2.6, it is 0x0000FFFF.
5That means an uncompressed CDF or a CDF with a selected variable(s) compressed
6Compression is not available for Pre-V2.6 CDFs. For Pre-V2.6, it is 0x0000FFFF, repeated from the �rst number.

6 CHAPTER 2. DOTCDF FILE

Magic number 1

Magic number 2

CDR

GDR

zVDR

ADR

VXR

CVVR

AzEDR

CVVR

AzEDR

zVDR

CPR

r

-

r

-

r

-

r

-

r

-

r

-

r

-

r

�

r

�

r

�

r

r

r

r

Figure 2.2: Example of a File Arrangement of a dotCDF File with a Compressed Variable

2.2 CDF Descriptor Record

All dotCDF �les contain a single CDF Descriptor Record (CDR) at �le o�set 0x00000008. The CDR

contains general information about the CDF (as does the GDR described in Section 2.3).

2.2. CDF DESCRIPTOR RECORD 7

Magic number 1

Magic number 2

CCR

CPR

r

-

Figure 2.3: Example of a File Arrangement of a Fully Compressed dotCDF File

The CDR, as shown in Figure 2.4, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this CDR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 1 which identi�es this as the CDR.

GDRoffset Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the GDR. The GDR is described in Section 2.3.

Version Signed 4-byte integer, big-endian byte ordering.

The version of the CDF distribution (library) that created this CDF. CDF

distributions are identi�ed with four values: version, release, increment,

and sub-increment. For example, CDF V2.5.8a is CDF version 2, release 5,

increment 8, sub-increment `a'. Note that the sub-increment is not stored

in a CDF.

Release Signed 4-byte integer, big-endian byte ordering.

The release of the CDF distribution that created this CDF. See the Version

�eld above.

Encoding Signed 4-byte integer, big-endian byte ordering.

The data encoding for attribute entry and variable values. Section 5.3

describes the supported data encodings and their corresponding internal

values.

Flags Signed 4-byte integer, big-endian byte ordering.

Boolean
ags, one per bit, describing some aspect of the CDF. Bit number-

ing is described in Chapter 5. The meaning of each bit is as follows...

0 The majority of variable values within a variable record.

Variable records are described in Chapter 4. Set indi-

cates row-majority. Clear indicates column-majority.

1 The �le format of the CDF. Set indicates single-�le.

Clear indicates multi-�le.

2-31 Reserved for future use. These bits are always clear.

rfuA Signed 4-byte integer, big-endian byte ordering.

8 CHAPTER 2. DOTCDF FILE

Reserved for future use. Always set to zero (0).

rfuB Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to zero (0).

Increment Signed 4-byte integer, big-endian byte ordering.

The increment of the CDF distribution that created this CDF. See the

Version �eld above. Prior to CDF V2.1 this �eld was always set to zero

(0).

rfuD Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

rfuE Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

Copyright Character string, ASCII character set.

The CDF copyright notice.7 This consists of a string of characters contain-

ing one or more lines of text with each line of text separated by a newline

character (0x0A). If the total number of characters in the copyright is less

than the size of this �eld, a NUL character (0x00) will be used to terminate

the string. In that case, the characters beyond the NUL-terminator (up to

the size of this �eld) are unde�ned.

This �eld may be one of two sizes. Prior to CDF V2.5, this �eld consisted

of 1945 characters (bytes).8 Since the release of CDF V2.5 this �eld has

been reduced to 256 characters (bytes).

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

GDRoffset 4 bytes

Version 4 bytes

Release 4 bytes

Encoding 4 bytes

Flags 4 bytes

rfuA 4 bytes

rfuB 4 bytes

Increment 4 bytes

rfuD 4 bytes

rfuE 4 bytes

Copyright variable 1945 or 256 bytes in length depending on the CDF

distribution that created/modi�ed the CDF.

Figure 2.4: CDF Descriptor Record (CDR)

7Well, sort of a copyright.
8Much of which was space reserved for future use. That future use never occurred.

2.3. GLOBAL DESCRIPTOR RECORD 9

2.3 Global Descriptor Record

All dotCDF �les contain a single Global Descriptor Record (GDR) at the �le o�set contained in the

GDRoffset �eld of the CDR (described in Section 2.2). The GDR contains general information about

the CDF (as does the CDR).

The GDR, shown in Figure 2.5, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this GDR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 2 which identi�es this as the GDR.

rVDRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst rVariable Descriptor Record (rVDR). The �rst

rVDR contains a �le o�set to the next rVDR and so on. An rVDR will

exist for each rVariable in the CDF. This �eld will contain 0x00000000 if

the CDF contains no rVariables. Beginning with CDF V2.1 the last rVDR

will contain a �le o�set of 0x00000000 for the �le o�set of the next rVDR

(to indicate the end of the rVDRs). Prior to CDF V2.1 the \next VDR" �le

o�set in the last rVDR is unde�ned. rVDRs are described in Section 2.6.

zVDRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst zVariable Descriptor Record (zVDR). The �rst

zVDR contains a �le o�set to the next zVDR and so on. A zVDR will exist

for each zVariable in the CDF. Because zVariables were not supported by

CDF until CDF V2.2, prior to CDF V2.2 this �eld is unde�ned. Beginning

with CDF V2.2 this �eld will contain either a �le o�set to the �rst zVDR or

0x00000000 if the CDF contains no zVariables. The last zVDR will always

contain 0x00000000 for the �le o�set of the next zVDR (to indicate the

end of the zVDRs). zVDRs are described in Section 2.6.

ADRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst Attribute Descriptor Record (ADR). The �rst

ADR contains a �le o�set to the next ADR and so on. An ADR will exist

for each attribute in the CDF. This �eld will contain 0x00000000 if the

CDF contains no attributes. Beginning with CDF V2.1 the last ADR will

contain a �le o�set of 0x00000000 for the �le o�set of the next ADR (to

indicate the end of the ADRs). Prior to CDF V2.1 the \next ADR" �le

o�set in the last ADR is unde�ned. ADRs are described in Section 2.4.

eof Signed 4-byte integer, big-endian byte ordering.

The end-of-�le (EOF) position in the dotCDF �le. This is the �le o�set of

the byte that is one beyond the last byte of the last internal record. (This

value is also the total number of bytes used in the dotCDF �le.) Prior to

CDF V2.1, this �eld is unde�ned.

NrVars Signed 4-byte integer, big-endian byte ordering.

The number of rVariables in the CDF. This will correspond to the number

of rVDRs in the dotCDF �le.

NumAttr Signed 4-byte integer, big-endian byte ordering.

10 CHAPTER 2. DOTCDF FILE

The number of attributes in the CDF. This will correspond to the number

of ADRs in the dotCDF �le.

rMaxRec Signed 4-byte integer, big-endian byte ordering.

The maximum rVariable record number in the CDF. Note that variable

record numbers are numbered beginning with zero (0). If no rVariable

records exist, this value will be negative one (-1).

rNumDims Signed 4-byte integer, big-endian byte ordering.

The number of dimensions for rVariables.

NzVars Signed 4-byte integer, big-endian byte ordering.

The number of zVariables in the CDF. This will correspond to the number

of zVDRs in the dotCDF �le. Prior to CDF V2.2 this value will always be

zero (0).

UIRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst Unused Internal Record (UIR). The �rst UIR

contains the �le o�set of the next UIR and so on. The last UIR contains

a �le o�set of 0x00000000 for the �le o�set of the next UIR (indicating

the end of the UIRs). Prior to CDF V2.5 this �eld will always contain

a �le o�set of 0x00000000 (indicating no UIRs). Internal records that are

unused may exist, however, prior to CDF V2.5. They have slightly di�erent

contents than UIRs and will be discussed in Section 2.13 along with actual

UIRs.

rfuC Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to zero (0).

rfuD Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

rfuE Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

rDimSizes Signed 4-byte integers, big-endian byte ordering within each.

Zero or more contiguous rVariable dimension sizes depending on the value

of the rNumDims �eld described above.

2.4 Attribute Descriptor Record

An Attribute Descriptor Record (ADR) contains a description of an attribute in a CDF. There will be one

ADR per attribute. The ADRhead �eld of the GDR contains the �le o�set of the �rst ADR.

Each ADR, as shown in Figure 2.6, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this ADR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 4 which identi�es this as an ADR.

2.4. ATTRIBUTE DESCRIPTOR RECORD 11

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

rVDRhead 4 bytes

zVDRhead 4 bytes

ADRhead 4 bytes

eof 4 bytes

NrVars 4 bytes

NumAttr 4 bytes

rMaxRec 4 bytes

rNumDims 4 bytes

NzVars 4 bytes

UIRhead 4 bytes

rfuC 4 bytes

rfuD 4 bytes

rfuE 4 bytes

rDimSizes variable Size depends on rNumDims �eld. If zero rVariable

dimensions, this �eld will not be present.

Figure 2.5: Global Descriptor Record (CDR)

ADRnext Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the next ADR. Beginning with CDF V2.1 the last ADR

will contain a �le o�set of 0x00000000 in this �eld (to indicate the end of

the ADRs). Prior to CDF V2.1 this �le o�set is unde�ned in the last ADR.

AgrEDRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst Attribute g/rEntry Descriptor Record (AgrEDR)

for this attribute. The �rst AgrEDR contains a �le o�set to the next

AgrEDR and so on. An AgrEDR will exist for each g/rEntry for this at-

tribute. This �eld will contain 0x00000000 if the attribute has no g/rEntries.

Beginning with CDF V2.1 the last AgrEDR will contain a �le o�set of

0x00000000 for the �le o�set of the next AgrEDR (to indicate the end of

the AgrEDRs). Prior to CDF V2.1 the \next AgrEDR" �le o�set in the

last AgrEDR is unde�ned.

Note that the term g/rEntry is used to refer to an entry that may be

either a gEntry or an rEntry. The type of entry described by an AgrEDR

depends on the scope of the corresponding attribute. AgrEDRs of a global-

scoped attribute describe gEntries. AgrEDRs of a variable-scoped attribute

describe rEntries.

Scope Signed 4-byte integer, big-endian byte ordering.

The intended scope of this attribute. The following internal values are

possible. . .

1 Global scope.

2 Variable scope.

3 Global scope assumed.

12 CHAPTER 2. DOTCDF FILE

4 Variable scope assumed.

Note that assumed scopes only exist prior to CDF V2.5.

Num Signed 4-byte integer, big-endian byte ordering.

This attribute's number. Attributes are numbered beginning with zero (0).

NgrEntries Signed 4-byte integer, big-endian byte ordering.

The number of g/rEntries for this attribute.

MAXgrEntry Signed 4-byte integer, big-endian byte ordering.

The maximum numbered g/rEntry for this attribute. g/rEntries are num-

bered beginning with zero (0). If there are no g/rEntries, this �eld will

contain negative one (-1).

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to zero (0).

AzEDRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst Attribute zEntry Descriptor Record (AzEDR) for

this attribute. The �rst AzEDR contains a �le o�set to the next AzEDR

and so on. An AzEDR will exist for each zEntry for this attribute. This

�eld will contain 0x00000000 if this attribute has no zEntries. The last

AzEDR will contain a �le o�set of 0x00000000 for the �le o�set of the next

AzEDR (to indicate the end of the AzEDRs). Because zEntries were not

supported by CDF until CDF V2.2, prior to CDF V2.2 this �eld will always

contain a �le o�set of 0x00000000.

NzEntries Signed 4-byte integer, big-endian byte ordering.

The number of zEntries for this attribute. Prior to CDF V2.2 this �eld will

always contain a value of zero (0).

MAXzEntry Signed 4-byte integer, big-endian byte ordering.

The maximum numbered zEntry for this attribute. zEntries are numbered

beginning with zero (0). Prior to CDF V2.2 this �eld will always contain

a value of negative one (-1).

rfuE Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

Name Character string, ASCII character set.

The name of this attribute. This �eld is always 64 bytes in length. If the

number of characters in the name is less than 64, a NUL character (0x00)

will be used to terminate the string. In that case, the characters beyond

the NUL-terminator (up to the size of this �eld) are unde�ned.

2.5 Attribute Entry Descriptor Record

An Attribute Entry Descriptor Record (AEDR) contains a description of an attribute entry. There are

two types of AEDRs: AgrEDRs describing g/rEntries and AzEDRs describing zEntries.9 The AgrEDRhead

9Because the only di�erence between AgrEDRs and AzEDRs is the value of the RecordType �eld, they will be referred to as

AEDRs throughout this document.

2.5. ATTRIBUTE ENTRY DESCRIPTOR RECORD 13

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

ADRnext 4 bytes

AgrEDRhead 4 bytes

Scope 4 bytes

Num 4 bytes

NgrEntries 4 bytes

MAXgrEntry 4 bytes

rfuA 4 bytes

AzEDRhead 4 bytes

NzEntries 4 bytes

MAXzEntry 4 bytes

rfuE 4 bytes

Name 64 bytes

Figure 2.6: Attribute Descriptor Record (ADR)

�eld of an ADR contains the �le o�set of the �rst AgrEDR for the corresponding attribute. Likewise, the

AzEDRhead �eld of an ADR contains the �le o�set of the �rst AzEDR. The linked lists of AEDRs starting

at AgrEDRhead and AzEDRhead will contain only AEDRs of that type | AgrEDRs or AzEDRs, respectively.

Note that the term g/rEntry is used to refer to an entry that may be either a gEntry or an rEntry. The

type of entry described by an AgrEDR depends on the scope of the corresponding attribute. AgrEDRs of

a global-scoped attribute describe gEntries. AgrEDRs of a variable-scoped attribute describe rEntries. The

scope of an attribute is stored in the Scope �eld of the corresponding ADR.

Each AEDR, as shown in Figure 2.7, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this AEDR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

Either the value 5 which identi�es this as an AgrEDR or the value 9 if

an AzEDR. Because zEntries were not supported until CDF V2.2, prior to

CDF V2.2 AzEDRs will not occur in a dotCDF �le.

AEDRnext Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the next AEDR. Beginning with CDF V2.1 the last AEDR

will contain a �le o�set of 0x00000000 in this �eld (to indicate the end of

the AEDRs). Prior to CDF V2.1 this �le o�set is unde�ned in the last

AEDR.10

Num Signed 4-byte integer, big-endian byte ordering.

The attribute number to which this entry corresponds. Attributes are num-

bered beginning with zero (0).

DataType Signed 4-byte integer, big-endian byte ordering.

The data type of this entry. The possible data type internal values are

10Note that prior to CDF V2.2 this only applies to AgrEDRs because zEntries were not yet supported.

14 CHAPTER 2. DOTCDF FILE

described in Section 5.3.

EntryNum Signed 4-byte integer, big-endian byte ordering.

This entry's number. Entries are numbered beginning with zero (0).

NumElems Signed 4-byte integer, big-endian byte ordering.

The number of elements of the data type (speci�ed by the DataType �eld)

for this entry.

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to zero (0).

rfuB Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to zero (0).

rfuC Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to zero (0).

rfuD Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to negative one (-1).

rfuE Signed 4-byte integer, big-endian byte ordering.

Reserved for future used. Always set to negative one (-1).

Value This entry's value. This consists of the number of elements (speci�ed by

the NumElems �eld) of the data type (speci�ed by the DataType �eld). This

can be thought of as a 1-dimensional array of values (stored contiguously).

The size of this �eld is the product of the number of elements and the size

in bytes of each element. The encoding of the elements depends on the

data encoding of the CDF (which is contained in the Encoding �eld of the

CDR). The possible encodings are described in Section 5.3.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

AEDRnext 4 bytes

AttrNum 4 bytes

DataType 4 bytes

Num 4 bytes

NumElems 4 bytes

rfuA 4 bytes

rfuB 4 bytes

rfuC 4 bytes

rfuD 4 bytes

rfuE 4 bytes

Value variable Size depends on the DataType and NumElems �elds.

Figure 2.7: Attribute Entry Descriptor Record (AEDR)

2.6. VARIABLE DESCRIPTOR RECORD 15

2.6 Variable Descriptor Record

A Variable Descriptor Record (VDR) contains a description of a variable in a CDF. There are two types of

VDRs: rVDRs describing rVariables and zVDRs describing zVariables.11 The rVDRhead �eld of the GDR

contains the �le o�set of the �rst rVDR. Likewise, the zVDRhead �eld of the GDR contains the �le o�set of

the �rst zVDR. The linked lists of VDRs starting at rVDRhead and zVDRhead will contain only VDRs of that

type | rVDRs or zVDRs, respectively. If this variable is compressed, a pointer to a Compressed Parameters

Record (CPR) is set in the CPRorSPRo�set �eld.

Each VDR, as shown in Figure 2.8, contains the following contiguous �elds. . . 12

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this VDR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

Either the value 3 which identi�es this as an rVDR or the value 8 if a

zVDR. Because zVariables were not supported until CDF V2.2, prior to

CDF V2.2 zVDRs will not occur in a dotCDF �le.

VDRnext Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the next VDR. Beginning with CDF V2.1 the last VDR

will contain a �le o�set of 0x00000000 in this �eld (to indicate the end

of the VDRs). Prior to CDF V2.1 this �le o�set is unde�ned in the last

VDR.13

DataType Signed 4-byte integer, big-endian byte ordering.

The data type of this entry. The possible data type internal values are

described in Section 5.3.

MaxRec Signed 4-byte integer, big-endian byte ordering.

The maximum record number written to this variable. Variable records are

numbered beginning at zero (0). If no records have been written to this

variable, this �eld will contain negative one (-1).

VXRhead Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the �rst Variable Index Record (VXR). VXRs are used in

single-�le CDFs to store the locations of Variable Value Records (VVRs).

VVRs are used to store variable records in single-�le CDFs. VXRs are

described in Section 2.7 and VVRs are described in Section 2.8. The �rst

VXR contains the �le o�set of the next VXR and so on. The last VXR

contains a �le o�set of 0x00000000 for the �le o�set of the next VXR (to

indicate the end of the VXRs). In single-�le CDFs, if no records have been

written to this variable, this �eld will contain a �le o�set of 0x00000000.

For multi-�le CDFs variable records are stored in separate �les and this

�eld will always contain a �le o�set of 0x00000000. The variable �les of a

multi-�le CDF are described in Chapter 3.

VXRtail Signed 4-byte integer, big-endian byte ordering.

11The term VDR is used when something applies to both rVDRs and zVDRs. The terms rVDR and zVDR will be used when

a distinction must be made.
12With the exceptions for rVariables being noted.
13Note that prior to CDF V2.2 this only applies to rVDRs because zVariables were not yet supported.

16 CHAPTER 2. DOTCDF FILE

The �le o�set of the last VXR. See the VXRhead �eld above for a description

of VXRs.

Flags Signed 4-byte integer, big-endian byte ordering.

Boolean
ags, one per bit, describing some aspect of this variable. Bit

numbering is described in Chapter 5. The meaning of each bit is as fol-

lows...

0 The record variance of this variable. Set indicates a

TRUE record variance. Clear indicates a FALSE record

variance.

1 Whether or not a pad value is speci�ed for this vari-

able. Set indicates that a pad value has been speci�ed.

Clear indicates that a pad value has not been speci�ed.

The PadValue �eld described below is only present if

a pad value has been speci�ed.

2 Whether or not a compression method is applied to

this variable. Set indicates that a compression has

been used. Clear indicates that a compression has not

been used. The CPRorSPRoffset �eld described be-

low provides the o�set of the Compressed Parameters

Record if this compression bit is set.

3-31 Reserved for future use. These bits are always clear.

sRecords Signed 4-byte integer, big-endian byte ordering.

Type of sparse records: no sparserecords, padded sparserecords, or previous

sparserecords.

rfuB Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to zero (0).

rfuC Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

rfuF Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Always set to negative one (-1).

NumElems Signed 4-byte integer, big-endian byte ordering.

The number of elements of the data type (speci�ed by the DataType �eld)

for this variable at each value.

Num Signed 4-byte integer, big-endian byte ordering.

This variable's number. Variables are numbered beginning with zero (0).

Note that rVariables and zVariables are each numbered beginning with zero

(0) and are considered two separate groups of variables.

CPRorSPRoffset Signed 4-byte integer, big-endian byte ordering.

CPR/SPR o�set depending on bits set in 'Flags'. If neither compression

nor sparse arrays, set to 0xFFFFFFFF.

BlockingFactor Signed 4-byte integer, big-endian byte ordering.

Blocking factor for this variable.

2.7. VARIABLE INDEX RECORD 17

Name Character string, ASCII character set.

The name of this variable. This �eld is always 64 bytes in length. If the

number of characters in the name is less than 64, a NUL character (0x00)

will be used to terminate the string. In that case, the characters beyond

the NUL-terminator (up to the size of this �eld) are unde�ned.

zNumDims Signed 4-byte integer, big-endian byte ordering.

The number of dimensions for this zVariable. This �eld will not be present

if this is an rVDR (rVariable).

zDimSizes Signed 4-byte integers, big-endian byte ordering within each.

Zero or more contiguous dimension sizes for this zVariable depending on

the value of the zNumDims �eld. This �eld will not be present if this is an

rVDR (rVariable).

DimVarys Signed 4-byte integers, big-endian byte ordering within each.

Zero or more contiguous dimension variances. If this is an rVDR, the

number of dimension variances will correspond to the value of the rNumDims

�eld of the GDR. If this is a zVDR, the number of dimension variances will

correspond to the value of the zNumDims �eld in this zVDR. A value of

negative one (-1) indicates a TRUE dimension variance and a value of zero

(0) indicates a FALSE dimension variance.

PadValue The variable's pad value. If bit 1 of the Flags �eld of this VDR is clear,

then a pad value has not been speci�ed for this variable and this �eld will

not be present. If a pad value has been speci�ed, the size of this �eld

depends on the number of elements and the size of the data type. The

encoding of the elements depends on the encoding of the CDF (which is

contained in the Encoding �eld of the CDR). The possible encodings are

described in Section 5.3.

2.7 Variable Index Record

Variable Index Records (VXRs) are used in single-�le CDFs to store the �le o�sets of Variable Values Records

(VVRs). VVRs contain a group of records written to a variable and are described in Section 2.8. VXRs

(and VVRs) will not exist in the dotCDF �le of a multi-�le CDF (because the variable records are stored in

separate �les as described in Chapter 3).

The VXRhead �eld of a VDR in a single-�le CDF contains the �le o�set of the �rst VXR for the corresponding

variable. The �rst VXR contains the �le o�set of the next VXR and so on. As many VXRs as are necessary

will exist (depending on the number of VVRs for the variable). The VXRtail �eld of a VDR contains the

�le o�set of the last VXR for the corresponding variable.

Each VXR, as shown in Figure 2.9, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this VXR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 6 which identi�es this as a VXR.

18 CHAPTER 2. DOTCDF FILE

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

VDRnext 4 bytes

DataType 4 bytes

MaxRec 4 bytes

VXRhead 4 bytes

VXRtail 4 bytes

Flags 4 bytes

sRecords 4 bytes

rfuB 4 bytes

rfuC 4 bytes

rfuF 4 bytes

NumElems 4 bytes

Num 4 bytes

CPRorSPRoffset 4 bytes

BlockingFactor 4 bytes

Name 64 bytes

zNumDims variable 4 bytes if a zVDR. Not present if an rVDR.

zDimSizes variable Size depends on the zNumDims �eld if a zVDR (but not

present if zero dimensions). Not present if an rVDR.

DimVarys variable Size depends on the zNumDims �eld if a zVDR (but not

present if zero dimensions). Size depends on the rNumDims

�eld of the GDR if an rVDR (but not present if zero

dimensions).

PadValue variable Size depends on DataType and NumElems �elds.

Not present if bit 1 of Flags �eld is not set.

Figure 2.8: Variable Descriptor Record (VDR)

VXRnext Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the next VXR. The last VXR will contain a �le o�set of

0x00000000 in this �eld (to indicate the end of the VXRs).

Nentries Signed 4-byte integer, big-endian byte ordering.

The number of index entries in this VXR. This is the maximum number of

VVRs that may be indexed using this VXR.

NusedEntries Signed 4-byte integer, big-endian byte ordering.

The number of index entries actually used in this VXR.

First Signed 4-byte integers, big-endian byte ordering within each.

This is a contiguous array of variable record numbers with each record

number being the �rst variable record in the corresponding VVR. The size

of this array depends on the value of the Nentries �eld. The nth entry

in this array corresponds to the nth entry in the Last and Offset �elds.

Unused entries in this array contain 0xFFFFFFFF. Note that variable records

are numbered beginning with zero (0).

Last Signed 4-byte integers, big-endian byte ordering within each.

This is a contiguous array of variable record numbers with each record

2.8. VARIABLE VALUES RECORD 19

number being the last variable record in the corresponding VVR. The size

of this array depends on the value of the Nentries �eld. The nth entry

in this array corresponds to the nth entry in the First and Offset �elds.

Unused entries in this array contain 0xFFFFFFFF. Note that variable records

are numbered beginning with zero (0).

Offset Signed 4-byte integers, big-endian byte ordering within each.

This is a contiguous array of �le o�sets with each being the �le o�set of

the corresponding VVR. The size of this array depends on the value of the

Nentries �eld. The nth entry in this array corresponds to the nth entry in

the First and Last �elds. Unused entries in this array contain 0xFFFFFFFF.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

VXRnext 4 bytes

Nentries 4 bytes

NusedEntries 4 bytes

First variable Size depends on the Nentries �eld.

Last variable Size depends on the Nentries �eld.

Offset variable Size depends on the Nentries �eld.

Figure 2.9: Variable Index Record (VXR)

Consider the following example VXR contents (for a variable having only one VXR). . .

RecordSize: 140

RecordType: 6

VXRnext: 0x00000000

Nentries: 10

NusedEntries: 2

First: 0, 100, 0xFFFFFFFF, 0xFFFFFFFF, ...

Last: 99, 149, 0xFFFFFFFF, 0xFFFFFFFF, ...

Offset: 0x0000A400, 0x0000B554, 0xFFFFFFFF, 0xFFFFFFFF, ...

There are two index entries being used. The �rst indicates that variable records 0 through 99 are stored in

the VVR at �le o�set 0x0000A400 and the second indicates that variable records 100 through 149 are stored

in the VVR at �le o�set 0x0000B554.

2.8 Variable Values Record

Variable Value Records (VVRs) are used to store one or more variable records in a single-�le CDF. VVRs

will not exist in multi-�le CDFs (where variable records are stored in separate �les). The contents of a

variable record is described in Chapter 4.

Each VVR, as shown in Figure 2.10, contains the following contiguous �elds. . .

20 CHAPTER 2. DOTCDF FILE

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this VVR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 7 which identi�es this as a VVR.

Records A group of one or more variable records. The record numbers in this group

will be contiguous. The size of this �eld depends on the number of variable

records in the group and the size of each record. The size of each record

will be the same and depends on the dimensionality, dimension variances,

data type, and number of elements per value of the corresponding variable.

These properties are discussed in Chapter 4. The encoding of the values in

each variable record depends on the encoding of the CDF (which is stored

in the Encoding �eld of the CDR). The possible encodings are described in

Chapter 5.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

Records variable Size depends on the number of variable records

in this VVR and the variable's data type, number

of elements per value, dimensionality, and

dimension variances.

Figure 2.10: Variable Values Record (VVR)

2.9 Compressed CDF Record

A Compressed CDF Record (CCR) is used to store the data from a compressed single-�le CDF. A CCR

is created when the whole CDF is compressed. It will not be created if only variables (some or even all)

are compressed. Only two internal records exist in a fully compressed CDF. Other than a CCR, another

record is a Compression Parameters Record (CPR) which is pointed to by the CCR. The CPR provides the

compression information, e.g., compression method and level, etc., used to compress the CDF �le. A CCR

will not exist in multi-�le CDFs.

Each CCR, as shown in Figure 2.11, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this CCR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 10 which identi�es this as a CCR.

CPRoffset Signed 4-byte integer, big-endian byte ordering.

File o�set to the Compressed Parameters Record (CPR) (bytes).

uSize Signed 4-byte integer, big-endian byte ordering.

Size of the CDF in its uncompressed IRs form. This byte count does NOT

include the magic numbers.

2.10. COMPRESSED PARAMETERS RECORD 21

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Set to zero.

data Compressed CDF data.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

CPRoffset 4 bytes

uSize 4 bytes

rfuA 4 bytes

data variable Size is RecordSize - 20 bytes.

Figure 2.11: Compressed CDF Record (CCR)

2.10 Compressed Parameters Record

A Compressed Paramters Record (CPR) is used to keep the information as the compression method and level

used to create a CDF or variable. This record is pointed to by either a CCR or a VDR. When a compression

is applied to the whole CDF, the CPR is pointed to by the CCR. If a compression is only applied to a

variable, a CPR is pointed to by a VDR. Currently, only Run-Length Encoding (RLE), Hu�man (HUFF),

Adaptive Hu�man (AHUFF) and GNU GZIP compression algorithms are supported.14

Each CPR, as shown in Figure 2.12, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this CPR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 11 which identi�es this as a CPR.

cType Signed 4-byte integer, big-endian byte ordering.

Type of compression.

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Set to zero.

pCount Signed 4-byte integer, big-endian byte ordering.

Compression parameter count. Currently, it is 1.

cParms Signed 4-byte integer, big-endian byte ordering.

Compression level. For RLE, HUFF and AHUFF, cParms[0] is 0. For

GZIP, it is between 1 and 9.

14Due to a huge memory requirement, the GZIP compression is disabled for the PCs running the 16-bit DOS/Windows 3.x.

22 CHAPTER 2. DOTCDF FILE

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

cType 4 bytes

rfuA 4 bytes

pCount 4 bytes

cParms variable Size depends on pCount

Figure 2.12: Compressed Paramters Record (CPR)

2.11 Sparseness Paramters Record

A Sparseness parameters Record (SPR) is used to store sparse array information used by a variable record

in a CDF. Currently, it has not yet been implemented in the V2.6 distribtuion.

Each SPR, as shown in Figure 2.13, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this SPR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 11 which identi�es this as a SPR.

sArraysType Signed 4-byte integer, big-endian byte ordering.

include the magic numbers.

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Set to zero.

pCount Signed 4-byte integer, big-endian byte ordering.

Sparseness parameter count.

sArraysParms Signed 4-byte integer, big-endian byte ordering.

Parameters for sparseness arrays.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

sArraysType 4 bytes

rfuA 4 bytes

pCount 4 bytes

sArraysParms variable Size depends on pCount.

Figure 2.13: Sparseness Parameters Record (SPR)

2.12. COMPRESSED VARIABLE VALUES RECORD 23

2.12 Compressed Variable Values Record

A Compressed Variable Values Record (CVVR) is used to store one section of compressed variable values

records (VVRs) for a variable in a single-�le CDF. This section of VVRs while uncompressed are contiguous

in the physical �le or scratch temporary �le. CVVRs will not exist in multi-�le CDFs.

Each CVVR, as shown in Figure 2.14, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this CVVR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value 12 which identi�es this as a CVVR.

rfuA Signed 4-byte integer, big-endian byte ordering.

Reserved for future use. Set to zero.

cSize Signed 4-byte integer, big-endian byte ordering.

Size in bytes of the compressed data which follows.

data Compressed data.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

rfuA 4 bytes

cSize 4 bytes

data variable Size is speci�ed in cSize

Figure 2.14: Compressed Variable Values Record (CVVR)

2.13 Unused Internal Record

Internal records in the dotCDF �le of a CDF may become unused due to a number of reasons. When that

occurs, the internal record is marked as being unused and is placed on a double-linked list of Unused Internal

Records (UIRs). The UIRhead �eld of the GDR contains the �le o�set of the �rst UIR. The �rst UIR contains

the �le o�set of the next UIR and so on. The last UIR contains a �le o�set of 0x00000000 as the �le o�set of

the next UIR (to indicate the end of the UIRs). Likewise, the last UIR contains the �le o�set of the previous

UIR and so on. The �rst UIR contains a �le o�set of 0x00000000 as the �le o�set of the previous UIR (to

indicate the start of the UIRs).

Each UIR, as shown in Figure 2.15, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this UIR (including this �eld).

24 CHAPTER 2. DOTCDF FILE

RecordType Signed 4-byte integer, big-endian byte ordering.

The value -1 which identi�es this as a UIR. (See the section on UUIRs

below for a slight complication.)

NextUIR Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the next UIR. The last UIR will contain a �le o�set of

0x00000000 in this �eld (to indicate the end of the UIRs).

PrevUIR Signed 4-byte integer, big-endian byte ordering.

The �le o�set of the previous UIR. The �rst UIR will contain a �le o�set

of 0x00000000 in this �eld (to indicate the start of the UIRs).

Remainder Zero or more unused bytes which constitute the remainder of the UIR. The

contents of this �eld are unde�ned.

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

NextUIR 4 bytes

PrevUIR 4 bytes

Remainder variable Size depends on the size of this UIR.

Figure 2.15: Unused Internal Record (UIR)

It is possible to have internal records in the dotCDF �le of a CDF that are unused but are not considered

UIRs. Let's call them Unsociable Unused Internal Records (UUIRs) because they are not on the double-

linked list of UIRs that begins at the �le o�set contained in the UIRhead �eld of the GDR. CDFs prior to

CDF V2.5 will contain only UUIRs because UIRs were not yet supported. Beginning with CDF V2.5 UUIRs

may also exist due to special circumstances (e.g, if an internal record that is no longer needed is less than

16 bytes which means that it is too small to be made a UIR).

Each UUIR, as shown in Figure 2.16, contains the following contiguous �elds. . .

RecordSize Signed 4-byte integer, big-endian byte ordering.

The size in bytes of this UUIR (including this �eld).

RecordType Signed 4-byte integer, big-endian byte ordering.

The value -1 which identi�es this as a UUIR. Unfortunately this is the

same value as that used for UIRs. UUIRs are distinguished from UIRs by

the fact that they are not on the double-linked list of UIRs.

Remainder Zero or more unused bytes which constitute the remainder of the UUIR.

The contents of this �eld are unde�ned.

2.13. UNUSED INTERNAL RECORD 25

Field Size Comments

RecordSize 4 bytes

RecordType 4 bytes

Remainder variable Size depends on the size of this UUIR.

Figure 2.16: Unsociable Unused Internal Record (UUIR)

26 CHAPTER 2. DOTCDF FILE

Chapter 3

Variable Files

In multi-�le CDFs, variable records are stored in separate �les | one per variable. Assuming a base name of

<cdfname>, the CDF would consist of the �le named <cdfname>.cdf,1 a �le named <cdfname>.v<i> for each

rVariable (where <i> is the rVariable number), and a �le named <cdfname>.z<j> for each zVariable (where

<j> is the zVariable number). Note that variables are numbered beginning with zero (0). For example, a

multi-�le CDF named sample having three rVariables would consist of the �les sample.cdf, sample.v0,

sample.v1, and sample.v2.

Within each variable �le are stored the corresponding variable records. The variable records are stored

contiguously beginning with record number zero (0) with no gaps in the record numbering. The number of

records will correspond to the MaxRec �eld of the variable's VDR (described in Section 2.6). The size of each

variable record will be the same and depends on the dimensionality, dimension variances, data type, and

number of elements per value of the corresponding variable. These properties are discussed in Chapter 4.

The encoding of the values in each variable record depends on the encoding of the CDF (which is stored in

the Encoding �eld of the CDR). The possible encodings are described in Chapter 5.

1On VMS and DOS systems, the �le names/extensions would be uppercase.

27

28 CHAPTER 3. VARIABLE FILES

Chapter 4

Variable Records

Variable records contain the values written to a variable. Each variable record contains one variable array.

The physical layout of a variable array depends on the dimensionality and dimension variances of the variable

and the variable majority of the CDF. The dimensionality of an rVariable is contained in the rNumDims

and rDimSizes �elds of the GDR. The dimensionality of a zVariable is contained in the zNumDims and

rDimSizes �elds of the corresponding zVDR. Dimension variances are contained in the DimVarys �eld of

the corresponding rVDR/zVDR. The CDF's variable majority is contained in bit 0 of the Flags �eld of the

CDR. Note also that each variable array value consists of some number of elements of the variable's data

type. A variable's data type and number of elements of that data type at each variable value are contained

in the DataType and NumElems �elds of the corresponding rVDR/zVDR.

Dimension variances allow a conceptual view of a physical variable array. For each array dimension, if the

corresponding dimension variance is TRUE, then the dimension actually exists. If the dimension variance is

FALSE, then the dimension is virtual and is not physically stored. This would probably be a good time for

an example. Assume a variable with the following characteristics. . .

Data Type CDF REAL4

Number of Elements 1

Number of Dimensions 2

Dimension Sizes 3,5

Dimension Variances TRUE,FALSE

The conceptual view of this variable array is that of a 3 by 5 2-dimensional array (represented by the syntax

2:[3,5]). The TRUE,FALSE dimension variances indicate that the �rst dimension is real (physically stored)

but that the second dimension is virtual (not physically stored). When an application accesses a value in

this variable array two dimension indices are speci�ed, one per dimension (represented by the syntax (i,j)

where i and j are the dimension indices). The �rst index is used to physically position to a value in the array

(because the corresponding dimension variance is TRUE). The second index, however, is essentially ignored

because the corresponding dimension variance of FALSE indicates that the second dimension is virtual and

is not physically stored. Conceptually, all values along the second dimension are the same (and are the one

value which is physically stored). This means that (i,0), (i,1), (i,2), (i,3), and (i,4) all map to the

same physical location in the variable array for any given �rst dimension index (i). For this variable record

stored at a �le o�set of n (in the dotCDF �le or a variable �le), the conceptual values would map to the

physical values as follows. . .

29

30 CHAPTER 4. VARIABLE RECORDS

File O�set of Physical Value Indices of Conceptual Value(s)

n (0,0),(0,1),(0,2),(0,3),(0,4)

n+4 (1,0),(1,1),(1,2),(1,3),(1,4)

n+8 (2,0),(2,1),(2,2),(2,3),(2,4)

Note that only three values are physically stored with each consisting of four bytes (which is the size of one

element of the CDF REAL4 data type).

Had the dimension variances been FALSE,TRUE instead, the conceptual to physical mapping would be as

follows. . .

File O�set of Physical Value Indices of Conceptual Value(s)

n (0,0),(1,0),(2,0)

n+4 (0,1),(1,1),(2,1)

n+8 (0,2),(1,2),(2,2)

n+12 (0,3),(1,3),(2,3)

n+16 (0,4),(1,4),(2,4)

In this case �ve values are physically stored and it is along the �rst dimension that all values are conceptually

the same.

It is not until two or more of the dimensions are physically stored (having dimension variances of TRUE) that

the variable majority of the CDF has an e�ect. Row majority means that the �rst dimension changes slowest

in the physical storage of the array and column majority means that the last dimension changes the slowest.

Assume that in our example the dimension variances are TRUE,TRUE. The physical layout of the array values

for each variable majority would be as follows. . .

File O�set of Indices of Conceptual Indices of Conceptual

Physical Value Value(s), Row Majority Value(s), Column Majority

n (0,0) (0,0)

n+4 (0,1) (1,0)

n+8 (0,2) (2,0)

n+12 (0,3) (0,1)

n+16 (0,4) (1,1)

n+20 (1,0) (2,1)

n+24 (1,1) (0,2)

n+28 (1,2) (1,2)

n+32 (1,3) (2,2)

n+36 (1,4) (0,3)

n+40 (2,0) (1,3)

n+44 (2,1) (2,3)

n+48 (2,2) (0,4)

n+52 (2,3) (1,4)

n+56 (2,4) (2,4)

Note that an application's conceptual view of the variable array does not depend on the variable majority.

When an application accesses the value at indices (i,j) the proper value will be accessed. The physical

location of that value, however, depends very much on the variable majority of the CDF.

0-dimensional and 1-dimensional variables are relatively simple. The variable array of a 0-dimesional variable

consists of one physically stored value. 1-dimensional variable arrays are stored as a vector of one or

more physical values when the dimension variance is TRUE or just a single physically stored value when the

31

dimension variance is FALSE (with all of the values along the dimension being conceptually the same).

When a variable value consists of more than one element (e.g., character data having the CDF CHAR data

type), all of the elements of that value are stored contiguously with the �rst element being at the lowest �le

o�set.

The size in bytes of a variable record is the product of the size in bytes of the data type, the number of

elements of the data type at each variable value, and the size of each dimension having a variance of TRUE.

As a �nal example consider a variable with the following characteristics. . .

Data Type CDF CHAR

Number of Elements 5

Number of Dimensions 3

Dimension Sizes 2,3,4

Dimension Variances TRUE,FALSE,TRUE

The conceptual value to physical value mapping for each majority would be as follows. . .

File O�set of Indices of Conceptual Indices of Conceptual

Physical Value Value(s), Row Majority Value(s), Column Majority

n (0,0,0),(0,1,0),(0,2,0) (0,0,0),(0,1,0),(0,2,0)

n+5 (0,0,1),(0,1,1),(0,2,1) (1,0,0),(1,1,0),(1,2,0)

n+10 (0,0,2),(0,1,2),(0,2,2) (0,0,1),(0,1,1),(0,2,1)

n+15 (0,0,3),(0,1,3),(0,2,3) (1,0,1),(1,1,1),(1,2,1)

n+20 (1,0,0),(1,1,0),(1,2,0) (0,0,2),(0,1,2),(0,2,2)

n+25 (1,0,1),(1,1,1),(1,2,1) (1,0,2),(1,1,2),(1,2,2)

n+30 (1,0,2),(1,1,2),(1,2,2) (0,0,3),(0,1,3),(0,2,3)

n+35 (1,0,3),(1,1,3),(1,2,3) (1,0,3),(1,1,3),(1,2,3)

In this example each variable record would consist of 40 bytes (which is the product of the size in bytes of

one element of the data type [1], the number of elements of the data type at each variable value [5], the size

of the �rst dimension [2], and the size of the last dimension [4]).

32 CHAPTER 4. VARIABLE RECORDS

Chapter 5

Encodings

5.1 Data Representations

5.1.1 Bits

The following sections will refer to �elds of one or more bits. In all cases the lowest numbered bit is the least

signi�cant.

5.1.2 Bytes

A byte consists of eight bits numbered 0 through 7 (with bit 0 being the least signi�cant). When values

consisting of more than one byte are referenced, the lowest numbered byte is stored at the lowest �le o�set.

(The lowest numbered byte is not necessarily the least signi�cant byte.)

5.1.3 Integers

Integers consist of one, two, or four bytes. 1-byte integers contain eight bits numbered 0 through 7. 2-byte

integers contain 16 bits numbered 0 through 15. 4-byte integers contain 32 bits numbered 0 through 31. In

each case bit 0 is the least signi�cant bit.

Signed integers are stored in two's-complement binary notation. For 1-byte integers this provides a range

of values from -128 through 127. For 2-byte integers this provides a range of values from -32768 through

32767. For 4-byte integers this provides a range of values from -2147483648 through 2147483647.

Unsigned integers are stored in binary notation. For 1-byte integers this provides a range of values from 0

through 255. For 2-byte integers this provides a range of values from 0 through 65535. For 4-byte integers

this provides a range of values from 0 through 4294967295.

Little-endian integers are stored with the least-signi�cant byte �rst (i.e., at the lowest �le o�set) and big-

endian integers are stored with the most-signi�cant byte �rst. Table 5.1 illustrates little-endian and big-

33

34 CHAPTER 5. ENCODINGS

endian byte orderings.

Little-Endian Big-Endian

Byte/O�set Contents Byte/O�set Contents

2-byte 0 bits 0-7 0 bits 8-15

integer 1 bits 8-15 1 bits 0-7

0 bits 0-7 0 bits 24-31

4-byte 1 bits 8-15 1 bits 16-23

integer 2 bits 16-23 2 bits 8-15

3 bits 24-31 3 bits 0-7

Table 5.1: Little-Endian vs. Big-Endian

5.1.4 Floating-Point

Several
oating-point encodings are possible in a CDF. Each is described in the following sections. Note

that a loss of precision may occur when converting between the various encodings because of di�erences

in the number of mantissa bits. Likewise, there are di�erences in the minimum and maximum magnitudes

which may be represented because of di�erences in the number of exponent bits. Appendix A illustrates how

the di�erent single-precision
oating-point encodings map to actual
oating-point values and Appendix B

illustrates the same for double-precision
oating-point encodings.

IEEE 754 Single-Precision Floating-Point

IEEE1 754 single-precision
oating-point values consist of four bytes containing one sign bit, eight exponent

bits (numbered 0 through 7), and 23 mantissa bits (numbered 0 through 22). IEEE 754 single-precision

oating-point values are stored in one of two ways: little-endian or big-endian. The arrangements of the bits

are shown in Tables 5.2 and 5.3, respectively.

Byte/O�set Bit(s) Contents

0 0-7 mantissa bits 0-7

1 0-7 mantissa bits 8-15

2 0-6 mantissa bits 16-22

7 exponent bit 0

3 0-6 exponent bits 1-7

7 sign bit (negative if set)

Table 5.2: IEEE 754, Single-Precision Floating-Point, Little-Endian

Digital's F FLOAT Single-Precision Floating-Point

Digital's2 F FLOAT single-precision
oating-point values consist of four bytes containing one sign bit, eight

exponent bits (numbered 0 through 7), and 23 mantissa bits (numbered 0 through 22). The arrangement of

the bits is shown in Table 5.4.

1The Institute of Electrical and Electronics Engineers, Inc.
2Digital Equipment Corporation

5.1. DATA REPRESENTATIONS 35

Byte/O�set Bit(s) Contents

0 0-6 exponent bits 1-7

7 sign bit (negative if set)

1 0-6 mantissa bits 16-22

7 exponent bit 0

2 0-7 mantissa bits 8-15

3 0-7 mantissa bits 0-7

Table 5.3: IEEE 754, Single-Precision Floating-Point, Big-Endian

Byte/O�set Bit(s) Contents

0 0-6 mantissa bits 16-22

7 exponent bit 0

1 0-6 exponent bits 1-7

7 sign bit (negative if set)

2 0-7 mantissa bits 0-7

3 0-7 mantissa bits 8-15

Table 5.4: Digital's F FLOAT, Single-Precision Floating-Point

IEEE 754 Double-Precision Floating-Point

IEEE 754 double-precision
oating-point values consist of eight bytes containing one sign bit, eleven exponent

bits (numbered 0 through 10), and 52 mantissa bits (numbered 0 through 51). IEEE 754 double-precision

oating-point values are stored in one of two ways: little-endian or big-endian. The arrangements of the bits

are shown in Tables 5.5 and 5.6, respectively.

Byte/O�set Bit(s) Contents

0 0-7 mantissa bits 0-7

1 0-7 mantissa bits 8-15

2 0-7 mantissa bits 16-23

3 0-7 mantissa bits 24-31

4 0-7 mantissa bits 32-39

5 0-7 mantissa bits 40-47

6 0-3 mantissa bits 48-51

4-7 exponent bits 0-3

7 0-6 exponent bits 4-10

7 sign bit (negative if set)

Table 5.5: IEEE 754, Double-Precision Floating-Point, Little-Endian

Digital's D FLOAT Double-Precision Floating-Point

Digital's D FLOAT double-precision
oating-point values consist of eight bytes containing one sign bit, eight

exponent bits (numbered 0 through 7), and 55 mantissa bits (numbered 0 through 54). The arrangement of

the bits is shown in Table 5.7.

36 CHAPTER 5. ENCODINGS

Byte/O�set Bit(s) Contents

0 0-6 exponent bits 4-10

7 sign bit (negative if set)

1 0-3 mantissa bits 48-51

4-7 exponent bits 0-3

2 0-7 mantissa bits 40-47

3 0-7 mantissa bits 32-39

4 0-7 mantissa bits 24-31

5 0-7 mantissa bits 16-23

6 0-7 mantissa bits 8-15

7 0-7 mantissa bits 0-7

Table 5.6: IEEE 754, Double-Precision Floating-Point, Big-Endian

Byte/O�set Bit(s) Contents

0 0-6 mantissa bits 48-54

7 exponent bit 0

1 0-6 exponent bits 1-7

7 sign bit (negative if set)

2 0-7 mantissa bits 32-39

3 0-7 mantissa bits 40-47

4 0-7 mantissa bits 16-23

5 0-7 mantissa bits 24-31

6 0-7 mantissa bits 0-7

7 0-7 mantissa bits 8-15

Table 5.7: Digital's D FLOAT, Double-Precision Floating-Point

Digital's G FLOAT Double-Precision Floating-Point

Digital's G FLOAT double-precision
oating-point values consist of eight bytes containing one sign bit, eleven

exponent bits (numbered 0 through 10), and 52 mantissa bits (numbered 0 through 51). The arrangement

of the bits is shown in Table 5.8.

Byte/O�set Bit(s) Contents

0 0-3 mantissa bits 48-51

4-7 exponent bits 0-3

1 0-6 exponent bits 4-10

7 sign bit (negative if set)

2 0-7 mantissa bits 32-39

3 0-7 mantissa bits 40-47

4 0-7 mantissa bits 16-23

5 0-7 mantissa bits 24-31

6 0-7 mantissa bits 0-7

7 0-7 mantissa bits 8-15

Table 5.8: Digital's G FLOAT, Double-Precision Floating-Point

5.2. CONTROL INFORMATION 37

5.2 Control Information

Two types of data are stored in a CDF | control information and application data. Control information is

used to manage the application data stored in a CDF. A user application generally does not have access to

the control information.3 Throughout this document, individual pieces of control information will also be

referred to as \internal values."

5.2.1 Integer Values

Integer control information is stored in 4-byte signed or unsigned integers with big-endian byte ordering.

Two's-complement is used for signed integers.

5.2.2 Character Strings

Character string control information is stored using the ASCII character set. The character strings are NUL-

terminated4 unless the number of characters is exactly equal to the size of the �eld containing the character

string.

5.3 Application Data

Application data consists of attribute entry values (commonly referred to as \metadata") and variable values

(simply referred to as \data"). Note that some of the control information stored in a CDF could also be

considered application metadata (e.g., attribute and variable names, the CDF's data encoding and variable

majority, and variable dimensionalities). For the purpose of this document, however, these internal values

will be considered control information.

Application data values are stored according to the data encoding of the CDF. A CDF's data encoding is

stored in the CDF Descriptor Record (CDR) described in Section 2.2. Application data values are also stored

as one of the supported CDF data types. Table 5.9 lists the supported data types and the corresponding

internal values used to identify each data type.

The possible data encodings for a CDF correspond to the platforms on which the CDF software distribution

is supported. Table 5.10 lists the currently supported data encodings along with the corresponding internal

values used to identify each data encoding.

Table 5.11 shows how each of the supported data types are stored for a particular data encoding. Note

that many of the data encodings are actually stored in the same way. Table 5.11 shows the equivalent data

encodings.

3An exception to this would be the indexing statistics provided to an application by the CDF library for variables in a

single-�le CDF.
4The ASCII NUL character (an integer value of 0x00).

38 CHAPTER 5. ENCODINGS

Data Type Internal Value Description

CDF INT1 1 1-byte, signed integer.

CDF INT2 2 2-byte, signed integer.

CDF INT4 4 4-byte, signed integer.

CDF UINT1 11 1-byte, unsigned integer.

CDF UINT2 12 2-byte, unsigned integer.

CDF UINT4 14 4-byte, unsigned integer.

CDF BYTEa 41 1-byte, signed integer.

CDF REAL4 21 4-byte, single-precision
oating-point.

CDF REAL8 22 8-byte, double-precision
oating-point.

CDF FLOATb 44 4-byte, single-precision
oating-point.

CDF DOUBLEc 45 8-byte, double-precision
oating-point.

CDF EPOCHd 31 8-byte, double-precision
oating-point.

CDF CHAR 51 1-byte, signed character (ASCII).e

CDF UCHAR 52 1-byte, unsigned character (ASCII).e

aCDF BYTE values are equivalent to CDF INT1 values.
bCDF FLOAT values are equivalent to CDF REAL4 values.
cCDF DOUBLE values are equivalent to CDF REAL8 values.
dCDF EPOCH values are equivalent to CDF REAL8 values. CDF EPOCH is used to store date/time values (as the number of

milliseconds since 1-Jan-0000 00:00:00.000).
eBoth signed and unsigned character data types are provided for applications that may want to distinguish between the two.

Note that attribute entries and variable values of this type are never NUL-terminated.

Table 5.9: Supported Data Types

Data Encoding Internal Value Description

NETWORK ENCODING 1 XDRa representation.

SUN ENCODING 2 Sun representation.

VAX ENCODING 3 VAX representation.

DECSTATION ENCODING 4 DECstation representation.

SGi ENCODING 5 SGi representation.

IBMPC ENCODING 6 IBM PC representation.

IBMRS ENCODING 7 IBM RS-6000 representation.

MAC ENCODING 9 Macintosh representation.

HP ENCODING 11 HP 9000 series representation.

NeXT ENCODING 12 NeXT representation.

ALPHAOSF1 ENCODING 13 DEC Alpha/OSF1 representation.

ALPHAVMSd ENCODING 14 DEC Alpha/OpenVMS representation.

Double-precision
oating-point values in D FLOAT

encoding.

ALPHAVMSg ENCODING 15 DEC Alpha/OpenVMS representation.

Double-precision
oating-point values in G FLOAT

encoding.

ALPHAVMSi ENCODING 16 DEC Alpha/OpenVMS representation.

Single/Double-precision
oating-point values in IEEE 754

encoding.

aeXternal Data Representation.

Table 5.10: Supported Data Encodings

5.3. APPLICATION DATA 39

Data Type(s)

CDF BYTE CDF REAL8

Data CDF INT1 CDF INT2 CDF INT4 CDF REAL4 CDF DOUBLE CDF CHAR

Encoding(s)a CDF UINT1 CDF UINT2 CDF UINT4 CDF FLOAT CDF EPOCH CDF UCHAR

NETWORK 1-byte 2-byte 4-byte IEEE 754 IEEE 754 ASCII

SUN integer integer, integer, single-precision double-precision character

HP big-endian big-endian
oating-point,
oating-point, set

NeXT big-endian big-endian

MAC

SGi

IBMRS

DECSTATION 1-byte 2-byte 4-byte IEEE 754 IEEE 754 ASCII

IBMPC integer integer, integer, single-precision double-precision character

ALPHAOSF1 little-endian little-endian
oating-point,
oating-point, set

ALPHAVMSi little-endian little-endian

VAX 1-byte 2-byte 4-byte Digital's F FLOAT Digital's D FLOAT ASCII

ALPHAVMSd integer integer, integer, single-precision double-precision character

little-endian little-endian
oating-point
oating-point set

ALPHAVMSg 1-byte 2-byte 4-byte Digital's F FLOAT Digital's G FLOAT ASCII

integer integer, integer, single-precision double-precision character

little-endian little-endian
oating-point
oating-point set

a ENCODING is implied at the end of each encoding.

Table 5.11: Data Encodings vs. Data Types

40 CHAPTER 5. ENCODINGS

Appendix A

Single-Precision Floating-Point

This appendix presents the exponent and mantissa values for a variety of single-precision
oating-point

values using Digital's F FLOAT and the IEEE 754 encoding. The sign bit is not shown but when the sign

bit is clear (0x0) the
oating-point value is positive and when the sign bit is set (0x1) the value is negative.

Section 5.1.4 illustrates how these exponent and mantissa values are arranged in a particular single-precision

oating-point value.

Digital's F FLOAT IEEE 754

Value Exp. Mantissa Exp. Mantissa

0.0000000000e+00 0x00 0x0000001 0x00 0x000000

0.0000000000e+00 0x00 0x0000011

0.0000000000e+00 0x00 0x0000021

.

.

.

0.0000000000e+00 0x00 0x7FFFFE1

0.0000000000e+00 0x00 0x7FFFFF1

1.4012984643e-45 0x00 0x000001

2.8025969286e-45 0x00 0x000002

4.2038953930e-45 0x00 0x000003

5.6051938573e-45 0x00 0x000004

.

.

.

2.9387302719e-39 0x00 0x1FFFFC

2.9387316732e-39 0x00 0x1FFFFD

2.9387330745e-39 0x00 0x1FFFFE

2.9387344758e-39 0x00 0x1FFFFF

41

42 APPENDIX A. SINGLE-PRECISION FLOATING-POINT

2.9387358771e-39 0x01 0x000000 0x00 0x200000

2.9387362274e-39 0x01 0x000001

2.9387365777e-39 0x01 0x000002

2.9387369280e-39 0x01 0x000003

2.9387372784e-39 0x01 0x000004 0x00 0x200001

2.9387376287e-39 0x01 0x000005

2.9387379790e-39 0x01 0x000006

2.9387383293e-39 0x01 0x000007

2.9387386797e-39 0x01 0x000008 0x00 0x200002

.

.

.

5.8774689515e-39 0x01 0x7FFFF8 0x00 0x3FFFFE

5.8774693018e-39 0x01 0x7FFFF9

5.8774696522e-39 0x01 0x7FFFFA

5.8774700025e-39 0x01 0x7FFFFB

5.8774703528e-39 0x01 0x7FFFFC 0x00 0x3FFFFF

5.8774707031e-39 0x01 0x7FFFFD

5.8774710535e-39 0x01 0x7FFFFE

5.8774714038e-39 0x01 0x7FFFFF

5.8774717541e-39 0x02 0x000000 0x00 0x400000

5.8774724548e-39 0x02 0x000001

5.8774731554e-39 0x02 0x000002 0x00 0x400001

5.8774738561e-39 0x02 0x000003

5.8774745567e-39 0x02 0x000004 0x00 0x400002

.

.

.

1.1754939304e-38 0x02 0x7FFFFA 0x00 0x7FFFFD

1.1754940005e-38 0x02 0x7FFFFB

1.1754940706e-38 0x02 0x7FFFFC 0x00 0x7FFFFE

1.1754941406e-38 0x02 0x7FFFFD

1.1754942107e-38 0x02 0x7FFFFE 0x00 0x7FFFFF

1.1754942808e-38 0x02 0x7FFFFF

1.1754943508e-38 0x03 0x000000 0x01 0x000000

1.1754944910e-38 0x03 0x000001 0x01 0x000001

1.1754946311e-38 0x03 0x000002 0x01 0x000002

1.1754947712e-38 0x03 0x000003 0x01 0x000003

.

.

.

1.7014114290e+38 0xFF 0x7FFFFC 0xFD 0x7FFFFC

1.7014115304e+38 0xFF 0x7FFFFD 0xFD 0x7FFFFD

1.7014116318e+38 0xFF 0x7FFFFE 0xFD 0x7FFFFE

1.7014117332e+38 0xFF 0x7FFFFF 0xFD 0x7FFFFF

43

1.7014118346e+38 0xFE 0x000000

1.7014120374e+38 0xFE 0x000001

1.7014122403e+38 0xFE 0x000002

1.7014124431e+38 0xFE 0x000003

.

.

.

3.4028228579e+38 0xFE 0x7FFFFC

3.4028230607e+38 0xFE 0x7FFFFD

3.4028232636e+38 0xFE 0x7FFFFE

3.4028234664e+38 0xFE 0x7FFFFF

Infinity 0xFF 0x0000002

NaN 0xFF 0x0000013

NaN 0xFF 0x0000023

.

.

.

NaN 0xFF 0x7FFFFE3

NaN 0xFF 0x7FFFFF3

Note that not all single-precision
oating-point values can be represented in both encodings. Several ranges

of
oating-point values, as well as some individual values, are of interest. . .

0.0000000000e+00

When an F FLOAT value has an exponent of 0x00, the
oating-point value represented is 0.0000000000e+00

regardless of the value of the mantissa.

1.4012984643e-45 through 2.9387344758e-39

These values can only be represented with the IEEE 754 encoding. Their magnitudes are too

small for the F FLOAT encoding.

2.9387358771e-39 through 5.8774714038e-39

The F FLOAT encoding has more precision in this range. Four times as many F FLOAT values fall

into this range as do IEEE 754 values.

5.8774717541e-39 through 1.1754942808e-38

The F FLOAT encoding also has more precision in this range. Twice as many F FLOAT values fall

into this range as do IEEE 754 values.

1.1754943508e-38 through 1.7014117332e+38

The F FLOAT and IEEE 754 encodings have equal precision through this range.

1If the sign bit is set (-0.0), a %SYSTEM-F-ROPRAND fatal error (on VAXes running VMS/OpenVMS) or a %SYSTEM-F-HPARITH

fatal error (on DEC Alphas running OpenVMS) will occur if the value is used.
2-Infinity if the sign bit is set.
3-NaN if the sign bit is set.

44 APPENDIX A. SINGLE-PRECISION FLOATING-POINT

1.7014118346e+38 through 3.4028234664e+38

These values can only be represented with the IEEE 754 encoding. Their magnitudes are too

large for the F FLOAT encoding.

Infinity

This value exists only in the IEEE 754 encoding.

NaN

Not a Number. These non-values exist only in the IEEE 754 encoding.

Appendix B

Double-Precision Floating-Point

This appendix presents the exponent and mantissa values for a variety of double-precision
oating-point

values using Digital's G FLOAT, Digital's D FLOAT, and the IEEE 754 encoding. The sign bit is not shown

but when the sign bit is clear (0x0) the
oating-point value is positive and when the sign bit is set (0x1)

the value is negative. Section 5.1.4 illustrates how these exponent and mantissa values are arranged in a

particular double-precision
oating-point value.

Digital's G FLOAT Digital's D FLOAT IEEE 754

Value Exp. Mantissa Exp. Mantissa Exp. Mantissa

0.00000000000000000e+000 0x000 0x00000000000001 0x000 0x000000000000001 0x000 0x0000000000000

0.00000000000000000e+000 0x000 0x00000000000011 0x000 0x000000000000011,2

0.00000000000000000e+000 0x000 0x00000000000021 0x000 0x000000000000021,2

.

.

.

0.00000000000000000e+000 0x000 0xFFFFFFFFFFFFE1 0x000 0x7FFFFFFFFFFFFE1,2

0.00000000000000000e+000 0x000 0xFFFFFFFFFFFFF1 0x000 0x7FFFFFFFFFFFFF1,2

4.94065645841246544e-324 0x000 0x0000000000001

9.88131291682493088e-324 0x000 0x0000000000002

.

.

.

5.56268464626799358e-309 0x000 0x3FFFFFFFFFFFE

5.56268464626799852e-309 0x000 0x3FFFFFFFFFFFF

5.56268464626800346e-309 0x001 0x0000000000000 0x000 0x4000000000000

5.56268464626800469e-309 0x001 0x0000000000001

5.56268464626800593e-309 0x001 0x0000000000002

5.56268464626800716e-309 0x001 0x0000000000003

45

46 APPENDIX B. DOUBLE-PRECISION FLOATING-POINT

5.56268464626800840e-309 0x001 0x0000000000004 0x000 0x4000000000001

5.56268464626800963e-309 0x001 0x0000000000005

5.56268464626801087e-309 0x001 0x0000000000006

5.56268464626801210e-309 0x001 0x0000000000007

5.56268464626801334e-309 0x001 0x0000000000008 0x000 0x4000000000002

.

.

.

1.11253692925359970e-308 0x001 0xFFFFFFFFFFFF8 0x000 0x7FFFFFFFFFFFE

1.11253692925359983e-308 0x001 0xFFFFFFFFFFFF9

1.11253692925359995e-308 0x001 0xFFFFFFFFFFFFA

1.11253692925360007e-308 0x001 0xFFFFFFFFFFFFB

1.11253692925360020e-308 0x001 0xFFFFFFFFFFFFC 0x000 0x7FFFFFFFFFFFF

1.11253692925360032e-308 0x001 0xFFFFFFFFFFFFD

1.11253692925360044e-308 0x001 0xFFFFFFFFFFFFE

1.11253692925360057e-308 0x001 0xFFFFFFFFFFFFF

1.11253692925360069e-308 0x002 0x0000000000000 0x000 0x8000000000000

1.11253692925360094e-308 0x002 0x0000000000001

1.11253692925360119e-308 0x002 0x0000000000002 0x000 0x8000000000001

1.11253692925360143e-308 0x002 0x0000000000003

1.11253692925360168e-308 0x002 0x0000000000004 0x000 0x8000000000002

.

.

.

2.22507385850719990e-308 0x002 0xFFFFFFFFFFFFA 0x000 0xFFFFFFFFFFFFD

2.22507385850720015e-308 0x002 0xFFFFFFFFFFFFB

2.22507385850720039e-308 0x002 0xFFFFFFFFFFFFC 0x000 0xFFFFFFFFFFFFE

2.22507385850720064e-308 0x002 0xFFFFFFFFFFFFD

2.22507385850720089e-308 0x002 0xFFFFFFFFFFFFE 0x000 0xFFFFFFFFFFFFF

2.22507385850720114e-308 0x002 0xFFFFFFFFFFFFF

2.22507385850720138e-308 0x003 0x0000000000000 0x001 0x0000000000000

2.22507385850720188e-308 0x003 0x0000000000001 0x001 0x0000000000001

.

.

.

2.93873587705571812e-039 0x380 0xFFFFFFFFFFFFE 0x37E 0xFFFFFFFFFFFFE

2.93873587705571844e-039 0x380 0xFFFFFFFFFFFFF 0x37E 0xFFFFFFFFFFFFF

2.93873587705571877e-039 0x381 0x0000000000000 0x001 0x00000000000000 0x37F 0x0000000000000

2.93873587705571885e-039 0x001 0x00000000000001

2.93873587705571893e-039 0x001 0x00000000000002

2.93873587705571901e-039 0x001 0x00000000000003

2.93873587705571910e-039 0x001 0x00000000000004

2.93873587705571918e-039 0x001 0x00000000000005

2.93873587705571926e-039 0x001 0x00000000000006

2.93873587705571934e-039 0x001 0x00000000000007

47

2.93873587705571942e-039 0x381 0x0000000000001 0x001 0x00000000000008 0x37F 0x0000000000001

2.93873587705571950e-039 0x001 0x00000000000009

2.93873587705571959e-039 0x001 0x0000000000000A

2.93873587705571967e-039 0x001 0x0000000000000B

2.93873587705571975e-039 0x001 0x0000000000000C

2.93873587705571983e-039 0x001 0x0000000000000D

2.93873587705571991e-039 0x001 0x0000000000000E

2.93873587705571999e-039 0x001 0x0000000000000F

2.93873587705572007e-039 0x381 0x0000000000002 0x001 0x00000000000010 0x37F 0x0000000000002

2.93873587705572016e-039 0x001 0x00000000000011

2.93873587705572024e-039 0x001 0x00000000000012

2.93873587705572032e-039 0x001 0x00000000000013

2.93873587705572040e-039 0x001 0x00000000000014

.

.

.

5.87747175411143623e-039 0x381 0xFFFFFFFFFFFFE 0x001 0x7FFFFFFFFFFFF0 0x37F 0xFFFFFFFFFFFFE

5.87747175411143632e-039 0x001 0x7FFFFFFFFFFFF1

5.87747175411143640e-039 0x001 0x7FFFFFFFFFFFF2

5.87747175411143648e-039 0x001 0x7FFFFFFFFFFFF3

5.87747175411143656e-039 0x001 0x7FFFFFFFFFFFF4

5.87747175411143664e-039 0x001 0x7FFFFFFFFFFFF5

5.87747175411143672e-039 0x001 0x7FFFFFFFFFFFF6

5.87747175411143681e-039 0x001 0x7FFFFFFFFFFFF7

5.87747175411143689e-039 0x381 0xFFFFFFFFFFFFF 0x001 0x7FFFFFFFFFFFF8 0x37F 0xFFFFFFFFFFFFF

5.87747175411143697e-039 0x001 0x7FFFFFFFFFFFF9

5.87747175411143705e-039 0x001 0x7FFFFFFFFFFFFA

5.87747175411143713e-039 0x001 0x7FFFFFFFFFFFFB

5.87747175411143721e-039 0x001 0x7FFFFFFFFFFFFC

5.87747175411143730e-039 0x001 0x7FFFFFFFFFFFFD

5.87747175411143738e-039 0x001 0x7FFFFFFFFFFFFE

5.87747175411143746e-039 0x001 0x7FFFFFFFFFFFFF

.

.

.

1.70141183460469182e+038 0x0FF 0x7FFFFFFFFFFFEB

1.70141183460469185e+038 0x0FF 0x7FFFFFFFFFFFEC

1.70141183460469187e+038 0x0FF 0x7FFFFFFFFFFFED

1.70141183460469189e+038 0x0FF 0x7FFFFFFFFFFFEE

1.70141183460469192e+038 0x0FF 0x7FFFFFFFFFFFEF

1.70141183460469194e+038 0x47F 0xFFFFFFFFFFFFE 0x0FF 0x7FFFFFFFFFFFF0 0x47D 0xFFFFFFFFFFFFE

1.70141183460469196e+038 0x0FF 0x7FFFFFFFFFFFF1

1.70141183460469199e+038 0x0FF 0x7FFFFFFFFFFFF2

1.70141183460469201e+038 0x0FF 0x7FFFFFFFFFFFF3

1.70141183460469203e+038 0x0FF 0x7FFFFFFFFFFFF4

1.70141183460469206e+038 0x0FF 0x7FFFFFFFFFFFF5

1.70141183460469208e+038 0x0FF 0x7FFFFFFFFFFFF6

1.70141183460469210e+038 0x0FF 0x7FFFFFFFFFFFF7

1.70141183460469213e+038 0x47F 0xFFFFFFFFFFFFF 0x0FF 0x7FFFFFFFFFFFF8 0x47D 0xFFFFFFFFFFFFF

48 APPENDIX B. DOUBLE-PRECISION FLOATING-POINT

1.70141183460469215e+038 0x0FF 0x7FFFFFFFFFFFF9

1.70141183460469218e+038 0x0FF 0x7FFFFFFFFFFFFA

1.70141183460469220e+038 0x0FF 0x7FFFFFFFFFFFFB

1.70141183460469222e+038 0x0FF 0x7FFFFFFFFFFFFC3

1.70141183460469225e+038 0x0FF 0x7FFFFFFFFFFFFD3

1.70141183460469227e+038 0x0FF 0x7FFFFFFFFFFFFE3

1.70141183460469229e+038 0x0FF 0x7FFFFFFFFFFFFF3

1.70141183460469232e+038 0x480 0x0000000000000 0x47E 0x0000000000000

1.70141183460469270e+038 0x480 0x0000000000001 0x47E 0x0000000000001

.

.

.

8.98846567431157754e+307 0x7FF 0xFFFFFFFFFFFFE 0x7FD 0xFFFFFFFFFFFFE

8.98846567431157854e+307 0x7FF 0xFFFFFFFFFFFFF 0x7FD 0xFFFFFFFFFFFFF

8.98846567431157954e+307 0x7FE 0x0000000000000

8.98846567431158153e+307 0x7FE 0x0000000000001

.

.

.

1.79769313486231551e+308 0xF7E 0xFFFFFFFFFFFFE

1.79769313486231571e+308 0xF7E 0xFFFFFFFFFFFFF

Infinity 0x7FF 0x00000000000004

NaN 0x7FF 0x00000000000015

NaN 0x7FF 0x00000000000025

.

.

.

NaN 0x7FF 0xFFFFFFFFFFFFE5

NaN 0x7FF 0xFFFFFFFFFFFFF5

Note that not all double-precision
oating-point values can be represented in all encodings. Several ranges

of
oating-point values, as well as some individual values, are of interest. . .

0.0000000000e+00

When a G FLOAT or D FLOAT value has an exponent of 0x00, the
oating-point value represented

is 0.00000000000000000e+00 regardless of the value of the mantissa.

1If the sign bit is set (-0.0), a %SYSTEM-F-ROPRAND fatal error (on VAXes running VMS/OpenVMS) or a %SYSTEM-F-HPARITH

fatal error (on DEC Alphas running OpenVMS) will occur if the value is used.
2Even if the sign bit is clear, a %SYSTEM-F-HPARITH fatal error will occur if the value is used on a DEC Alpha running

OpenVMS.
3If the sign bit is set or clear, a %SYSTEM-F-HPARITH fatal error will occur if the value is used on a DEC Alpha running

OpenVMS.
4-Infinity if the sign bit is set.
5-NaN if the sign bit is set.

49

4.94065645841246544e-324 through 5.56268464626799852e-309

These values can only be represented with the IEEE 754 encoding. Their magnitudes are too

small for the G FLOAT and D FLOAT encodings.

5.56268464626800346e-309 through 1.11253692925360057e-308

These values can only be represented with the G FLOAT and IEEE 754 encodings. Their mag-

nitudes are too small for the D FLOAT encoding. In this range the G FLOAT encoding has more

precision than the IEEE 754 encoding. Four times as many G FLOAT values fall into this range

as do IEEE 754 values.

1.11253692925360069e-308 through 2.22507385850720114e-308

These values can only be represented with the G FLOAT and IEEE 754 encodings. Their mag-

nitudes are too small for the D FLOAT encoding. In this range the G FLOAT encoding has more

precision than the IEEE 754 encoding. Twice as many G FLOAT values fall into this range as do

IEEE 754 values.

2.22507385850720138e-308 through 2.93873587705571844e-039

These values can only be represented with the G FLOAT and IEEE 754 encodings. Their magni-

tudes are too small for the D FLOAT encoding. In this range the G FLOAT and IEEE 754 encodings

have equal precision.

2.93873587705571877e-039 through 1.70141183460469229e+038

Through this range the D FLOAT encoding has more precision. Eight times as many D FLOAT

values fall into this range as do G FLOAT or IEEE 754 values. The G FLOAT and IEEE 754

encodings have equal precision through this range.

1.70141183460469232e+038 through 8.98846567431157854e+307

These values can only be represented with the G FLOAT and IEEE 754 encodings. Their magni-

tudes are too large for the D FLOAT encoding. In this range the G FLOAT and IEEE 754 encodings

have equal precision.

8.98846567431157954e+307 through 1.79769313486231571e+308

These values can only be represented with the IEEE 754 encoding. Their magnitudes are too

large for the G FLOAT and D FLOAT encodings.

Infinity

This value exists only in the IEEE 754 encoding.

NaN

Not a Number. These non-values exist only in the IEEE 754 encoding.

